2,198 research outputs found

    Techniques for Providing Outstanding Customer Service

    Full text link
    Providing exceptional customer service should be one of the primary goals for all academic libraries. However, with the day- to- day interruptions, librarians sometimes forget all about customer service. By developing a Customer Service Task Force, Penfield Library has been able to develop a number of projects in the past two years to greatly improve its reputation. Such methods as surveys and small and large focus groups were conducted to determine what projects needed to be addressed. Tips and tricks to providing quality customer service in a small college/university library are also presented

    “Boyer Reconsidered”: Fostering Students’ Scholarly Habits of Mind and Models of Practice

    Get PDF
    In his Scholarship Reconsidered: Priorities of the Professoriate, Ernest L. Boyer argued for a conception of ‘scholarship’ that recognizes traditional research – what he termed the ‘scholarship of discovery’ – but which also includes the scholarly domains of ‘integration’, ‘application’, and ‘teaching’. His validation of teaching has spawned a virtual ‘industry’ devoted to what is now known as the Scholarship of Teaching and Learning (SoTL). fIn this paper I seize upon the fact that, in the process of assembling his argument for better recognition of the range of faculty work, Boyer reconsidered the very concept of scholarship, arriving at a broader conception that highlights and celebrates a rich intersection of varied scholarly activities and practices. After introducing Boyer’s four domains of scholarship and summarizing the various scholarly activities – what might be termed the ‘habits of mind’ and ‘models of practice’ – that are associated with those domains, I use the faculty-teaching-scholar template that emerges to generate a map for the development of the student-as-scholar. There is, I believe, a serious need to balance the (quantitatively and qualitatively) great work on the faculty-teaching component of SoTL with an increased focus on the student-learning side. Finally, I demonstrate how the various scholarly habits of mind and models of practice that help define the student-as-scholar are potentially developed in teaching and learning contexts identified as ‘high-impact educational practices’. These scholarly habits of mind, models of practice, and high-impact practices are placed in the broader context of ‘purposeful pathways’, i.e., degree-level curricular and co-curricular plans that could be considered as analogues of faculty-scholars’ research agendas

    Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    Full text link
    Anomalously dispersive cavities, particularly white light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, their use has been proposed for use in LIGO-like gravity wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed ℏω/2\hbar \omega/2. For white light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.Comment: 9 pages, 4 figure

    Mapping 6D N = 1 supergravities to F-theory

    Get PDF
    We develop a systematic framework for realizing general anomaly-free chiral 6D supergravity theories in F-theory. We focus on 6D (1, 0) models with one tensor multiplet whose gauge group is a product of simple factors (modulo a finite abelian group) with matter in arbitrary representations. Such theories can be decomposed into blocks associated with the simple factors in the gauge group; each block depends only on the group factor and the matter charged under it. All 6D chiral supergravity models can be constructed by gluing such blocks together in accordance with constraints from anomalies. Associating a geometric structure to each block gives a dictionary for translating a supergravity model into a set of topological data for an F-theory construction. We construct the dictionary of F-theory divisors explicitly for some simple gauge group factors and associated matter representations. Using these building blocks we analyze a variety of models. We identify some 6D supergravity models which do not map to integral F-theory divisors, possibly indicating quantum inconsistency of these 6D theories.Comment: 37 pages, no figures; v2: references added, minor typos corrected; v3: minor corrections to DOF counting in section

    Viewpoints on the #MeToo Movement: A Q-Methods Study

    Get PDF

    Keratin 6a marks mammary bipotential progenitor cells that can give rise to a unique tumor model resembling human normal-like breast cancer.

    Get PDF
    Progenitor cells are considered an important cell of origin of human malignancies. However, there has not been any single gene that can define mammary bipotential progenitor cells, and as such it has not been possible to use genetic methods to introduce oncogenic alterations into these cells in vivo to study tumorigenesis from them. Keratin 6a is expressed in a subset of mammary luminal epithelial cells and body cells of terminal end buds. By generating transgenic mice using the Keratin 6a (K6a) gene promoter to express tumor virus A (tva), which encodes the receptor for avian leukosis virus subgroup A (ALV/A), we provide direct evidence that K6a(+) cells are bipotential progenitor cells, and the first demonstration of a non-basal location for some biopotential progenitor cells. These K6a(+) cells were readily induced to form mammary tumors by intraductal injection of RCAS (an ALV/A-derived vector) carrying the gene encoding the polyoma middle T antigen. Tumors in this K6a-tva line were papillary and resembled the normal breast-like subtype of human breast cancer. This is the first model of this subtype of human tumors and thus may be useful for preclinical testing of targeted therapy for patients with normal-like breast cancer. These observations also provide direct in vivo evidence for the hypothesis that the cell of origin affects mammary tumor phenotypes

    On nonsupersymmetric \BC^4/\BZ_N, tachyons, terminal singularities and flips

    Full text link
    We investigate nonsupersymmetric \BC^4/\BZ_N orbifold singularities using their description in terms of the string worldsheet conformal field theory and its close relation with the toric geometry description of these singularities and their possible resolutions. Analytic and numerical study strongly suggest the absence of nonsupersymmetric Type II terminal singularities (i.e. with no marginal or relevant blowup modes) so that there are always moduli or closed string tachyons that give rise to resolutions of these singularities, although supersymmetric and Type 0 terminal singularities do exist. Using gauged linear sigma models, we analyze the phase structure of these singularities, which often involves 4-dimensional flip transitions, occurring between resolution endpoints of distinct topology. We then discuss 4-dim analogs of unstable conifold-like singularities that exhibit flips, in particular their Type II GSO projection and the phase structure. We also briefly discuss aspects of M2-branes stacked at such singularities and nonsupersymmetric AdS_4\times S^7/\BZ_N backgrounds.Comment: Latex, 43pgs incl. appendices, 2 eps figs, v2. minor clarifications added, to appear in JHE

    Islands of conformational stability for Filopodia

    Get PDF
    Filopodia are long, thin protrusions formed when bundles of fibers grow outwardly from a cell surface while remaining closed in a membrane tube. We study the subtle issue of the mechanical stability of such filopodia and how this depends on the deformation of the membrane that arises when the fiber bundle adopts a helical configuration. We calculate the ground state conformation of such filopodia, taking into account the steric interaction between the membrane and the enclosed semiflexible fiber bundle. For typical filopodia we find that a minimum number of fibers is required for filopodium stability. Our calculation elucidates how experimentally observed filopodia can obviate the classical Euler buckling condition and remain stable up to several tens of . We briefly discuss how experimental observation of the results obtained in this work for the helical-like deformations of enclosing membrane tubes in filopodia could possibly be observed in the acrosomal reactions of the sea cucumber Thyone, and the horseshoe crab Limulus. Any realistic future theories for filopodium stability are likely to rely on an accurate treatment of such steric effects, as analysed in this work

    Tate Form and Weak Coupling Limits in F-theory

    Full text link
    We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU(n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.Comment: 34 page

    Charge Lattices and Consistency of 6D Supergravity

    Get PDF
    We extend the known consistency conditions on the low-energy theory of six-dimensional N = 1 supergravity. We review some facts about the theory of two-form gauge fields and conclude that the charge lattice Gamma for such a theory has to be self-dual. The Green-Schwarz anomaly cancellation conditions in the supergravity theory determine a sublattice of Gamma. The condition that this sublattice can be extended to a self-dual lattice Gamma leads to a strong constraint on theories that otherwise appear to be self-consistent.Comment: 15 pages. v2: minor changes; references, additional example added; v3: minor corrections and clarifications added, JHEP versio
    • 

    corecore